Jul 17, 2011

How Do Web Search Engines Work?

Search engines use automated software programs knows as spiders or bots to survey the Web and build their databases. Web documents are retrieved by these programs and analyzed.  Data collected from each web page are then added to the search engine index.  When you enter a query at a search engine site, your input is checked against the search engine's index of all the web pages it has analyzed.  The best urls are then returned to you as hits, ranked in order with the best results at the top.

        Please note: search engines are not simple. They include incredibly detailed processes and methodologies, and are updated all the time. This is a bare bones look at how search engines work to retrieve your search results. All search engines go by this basic process when conducting search processes, but because there are differences in search engines, there are bound to be different results depending on which engine you use.
  1. The searcher types a query into a search engine.
  2. Search engine software quickly sorts through literally millions of pages in its database to find matches to this query.
  3. The search engine's results are ranked in order of relevancy. 

From Wikipedia:


High-level architecture of a standard Web crawler
A search engine operates, in the following order
  1. Web crawling
  2. Indexing
  3. Searching.
Web search engines work by storing information about many web pages, which they retrieve from the html itself. These pages are retrieved by a Web crawler (sometimes also known as a spider) — an automated Web browser which follows every link on the site. Exclusions can be made by the use of robots.txt. The contents of each page are then analyzed to determine how it should be indexed (for example, words are extracted from the titles, headings, or special fields called meta tags). Data about web pages are stored in an index database for use in later queries. A query can be a single word. The purpose of an index is to allow information to be found as quickly as possible. Some search engines, such as Google, store all or part of the source page (referred to as a cache) as well as information about the web pages, whereas others, such as AltaVista, store every word of every page they find. This cached page always holds the actual search text since it is the one that was actually indexed, so it can be very useful when the content of the current page has been updated and the search terms are no longer in it. This problem might be considered to be a mild form of linkrot, and Google's handling of it increases usability by satisfying user expectations that the search terms will be on the returned webpage. This satisfies the principle of least astonishment since the user normally expects the search terms to be on the returned pages. Increased search relevance makes these cached pages very useful, even beyond the fact that they may contain data that may no longer be available elsewhere.
When a user enters a query into a search engine (typically by using key words), the engine examines its index and provides a listing of best-matching web pages according to its criteria, usually with a short summary containing the document's title and sometimes parts of the text. The index is built from the information stored with the data and the method by which the information is indexed. Unfortunately, there are currently no known public search engines that allow documents to be searched by date. Most search engines support the use of the boolean operators AND, OR and NOT to further specify the search query. Boolean operators are for literal searches that allow the user to refine and extend the terms of the search. The engine looks for the words or phrases exactly as entered. Some search engines provide an advanced feature called proximity search which allows users to define the distance between keywords. There is also concept-based searching where the research involves using statistical analysis on pages containing the words or phrases you search for. As well, natural language queries allow the user to type a question in the same form one would ask it to a human. A site like this would be ask.com.
The usefulness of a search engine depends on the relevance of the result set it gives back. While there may be millions of web pages that include a particular word or phrase, some pages may be more relevant, popular, or authoritative than others. Most search engines employ methods to rank the results to provide the "best" results first. How a search engine decides which pages are the best matches, and what order the results should be shown in, varies widely from one engine to another. The methods also change over time as Internet usage changes and new techniques evolve. There are two main types of search engine that have evolved: one is a system of predefined and hierarchically ordered keywords that humans have programmed extensively. The other is a system that generates an "inverted index" by analyzing texts it locates. This second form relies much more heavily on the computer itself to do the bulk of the work.
Most Web search engines are commercial ventures supported by advertising revenue and, as a result, some employ the practice of allowing advertisers to pay money to have their listings ranked higher in search results. Those search engines which do not accept money for their search engine results make money by running search related ads alongside the regular search engine results. The search engines make money every time someone clicks on one of these ads.

                                                                                                                     Source: Internet,WikiPedia

No comments:

Post a Comment

DOGE is the perfect example of what can be achieved if a cryptocurrency has strong community support. Born as an Internet meme, Dogecoin dem...